Indirect inference for locally stationary ARMA processes with stable innovations
نویسندگان
چکیده
منابع مشابه
Consistent estimation and order selection for non-stationary autoregressive processes with stable innovations
A possibly non-stationary autoregressive process, of unknown finite order, with possibly infinite-variance innovations is studied. The Ordinary Least Squares autoregressive parameter estimates are shown to be consistent, and their rate of convergence, which depends on the index of stability, α, is established. We also establish consistency of lag-order selection criteria in the non-stationary c...
متن کاملInference for modulated stationary processes.
We study statistical inferences for a class of modulated stationary processes with time-dependent variances. Due to non-stationarity and the large number of unknown parameters, existing methods for stationary or locally stationary time series are not applicable. Based on a self-normalization technique, we address several inference problems, including self-normalized central limit theorem, self-...
متن کاملMCMC and EM-based methods for inference in heavy-tailed processes with α-stable innovations
In this paper we present both stochastic and deterministic iterative methods for inference about random processes with symmetric stable innovations. The proposed methods use a scale mixtures of normals (SMiN) representation of the symmetric stable law to express the processes in conditionally Gaussian form. This allows standard procedures for dealing with the Gaussian case to be re-used directl...
متن کاملUnit Root Inference for Non-Stationary Linear Processes driven by Infinite Variance Innovations∗
The contribution of this paper is two-fold. First, we derive the asymptotic null distribution of the familiar augmented Dickey-Fuller [ADF] statistics in the case where the shocks follow a linear process driven by infinite variance innovations. We show that these distributions are free of serial correlation nuisance parameters but depend on the tail index of the infinite variance process. These...
متن کاملSequential Monte Carlo for inference of latent ARMA time-series with innovations correlated in time
We consider the problem of sequential inference of latent time-series with innovations correlated in time and observed via nonlinear functions. We accommodate time-varying phenomena with diverse properties by means of a flexible mathematical representation of the data. We characterize statistically such time-series by a Bayesian analysis of their densities. The density that describes the transi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Computation and Simulation
سال: 2020
ISSN: 0094-9655,1563-5163
DOI: 10.1080/00949655.2020.1797030